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A coupled formulation based on the semi-analytical finite element technique is developed
for composite shells conveying fluid. The structural finite element formulation is from
Ramasamy and Ganesan (1998 Computers and Structures 70, 363–376), while the fluid part
is modelled by the characteristic wave equation. The fluid part is modelled using a velocity
potential formulation and the dynamic pressure acting on the walls is derived from
Bernoulli’s equation. Impermeability and dynamic condition are imposed on the fluid–
structure interface. The finite element equations for the composite shell conveying fluid are
validated using available results in the literature. A detailed parametric study is carried out
for various boundary conditions as well as for different length-to-radius and radius-to-
thickness ratios.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The dynamics of pipes conveying fluid has been studied extensively as can be seen
from the review by Pa.ııdoussis and Li [1]. This review paper focuses more on the physical
aspects of the problem than on mathematical formulations. Ramasamy and Ganesan [2]
studied the vibration characteristics of fluid-filled shells with a constrained viscoelastic
layer based on the Wilkins theory [3]. However, they did not consider fluid flow.
Selman and Lakis [4] have developed a theory for the determination of the effects of
flowing fluid on the vibration characteristics of an open anisotropic cylindrical shell
submerged in a fluid and subjected simultaneously to an external and internal flow. They
have used an analytical formulation to solve the fluid part. Olson and Jamaison [5]
compared a general-purpose finite element program with analytical solution for elastic
pipes conveying a fluid. Chang and Chiou [6] studied the natural frequencies and
critical velocities of laminated circular cylindrical shells with fixed ends conveying
fluids using a hybrid FE/analytical method. They used a Mindlin-type first order
transverse shear deformable cylindrical shell theory for the structure and an analytical
method for the fluid. For complex piping geometry, analytical techniques cannot be used.
A number of investigators have proposed finite element formulations for fluid flow
problems. For instance, Everstine [7] proposed a velocity potential formulation for a
symmetric finite element solution of transient wave propagation problems, while Olson
and Bathe [8] proposed a f� u � p finite element formulation in order to eliminate the
rigid body mode and enable the solution of static problems. Kock and Olson [9]
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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introduced an Eulerian form of the non-linear velocity potential-density formulation and
the significant feature is the derivation of the formulation from a single unified variational
principle. Nitikitpaiboon and Bathe [10] extended the work of Olson and Bathe [8] by
developing a non-linear u � f� r� l arbitrary Langrangian–Eulerian formulation in
which both the velocity potential, f; and the density r are employed. Their method takes
into account the non-Eulerian nature of the finite element mesh for large boundary
movements.

From the literature survey, it is found that, in general, most of the investigations
reported deal with pipes conveying fluid, while there are only a few papers on shells. Most
of the work deals with conventional materials. In addition, use of semi-analytical finite
element formulation has not been attempted for composite materials. In the present
study, a finite element formulation for a coupled fluid–structure interaction (FSI)
problem for the case of a compressible fluid flow through composite shell has been
attempted. The formulation is general in that it is applicable to any type of shell and is
based on a potential-based finite element formulation for the fluid. Ramasamy and
Ganesan [1] have used a pressure-based formulation, which is more suitable for stationary
fluids. The present paper deals with the behaviour of different composite shells conveying
fluids.

It is noted from the literature that pipe instability occurs predominantly in the bending
mode (first circumferential mode, n ¼ 1). But for thin pipes conveying fluid, the instability
can be of shell type. This is first reported by Pa.ııdoussis and Denise [11]. Hence in the
present study, an analysis is carried out for composite shells conveying fluids for different
boundary conditions of the shell, as well as different length-to-radius ratios (l=a=1, 4 and
25), different layer angles and radius-to-thickness ratios (a=h=20, 50, 100 and 200).
Both divergence and coupled mode flutter instabilities can occur as seen from
the literature. The main aim of this paper is to find out whether, it is possible to
predict the type of instabilities that can occur in composite shells conveying fluids and
establish a relation between the instability and the circumferential modes of the composite
shell.

2. FINITE ELEMENT FORMULATION

2.1. STRUCTURE

Ramasamy and Ganesan [1] developed a general shell finite element for viscoelastic
shells, based on the displacement field proposed by Wilkins et al. [3]. Figure 1 shows the
schematic of the viscoelastic shell structure, consisting of a core viscoelastic layer
sandwiched between two layers.

For the core layer, the displacement relations are

uc ¼ uo þ zcs; vc ¼ vo þ zcy; wc ¼ wo; ð1Þ

where u; v; and w are the total displacements in the s; y; and z directions.
For outer and inner facing, respectively, the displacement relations are

uo; ui ¼ u0 � hys þ ðz � hÞfs; vo; vi ¼ v0 � hyq þ ðz � hÞfq; wo;wi ¼ w0: ð2Þ

Here ‘‘z’’ denotes the distance from the middle surface of the shell, ‘‘h’’ is half
the core thickness and R is the radius of the circumferential direction. The y
direction variation is expressed in a Fourier series in the semi-analytical
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Figure 1. Viscoelastic structure.
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formulation.

uo

vo

wo

cs

cy

fs

fy

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼
X1
m¼0

½%yy1	

uom1

vom1

wom1

csm1

cym1

fsm1

fym1

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

þ ½%yy2	

uom2

vom2

wom2

csm2

cym2

fsm2

fym2

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð3aÞ

where [%yy1] and [%yy2] are defined as follows

½%yy1	 ¼

c

s

c

c

s

s

c

2
666666666664

3
777777777775
; ½%yy2	 ¼

s

c

s

s

c

c

s

2
666666666664

3
777777777775
; ð3bÞ

where c ¼ cos ny; s ¼ sin ny:
In this case, a three-noded curved isoparametric ring element with seven degrees per

node is derived using the semi-analytical method. The elemental displacement parameters
are

ue ¼ fuo1; vo1;wo1;cs1;cy1;fs1;fy1; uo2; vo2;wo2;cs2; . . . ;wo3;cs3;cy3;fs3;fy3g; ð4Þ
where subscripts 1, 2 and 3 denote the three nodes. The strain–displacement relations, the
shape functions and the elasticity matrix are given in reference [12]. Hence, the elemental
stiffness and mass matrices are obtained from the following;

ke ¼
Z

BTDB dv; me ¼ r
Z

NTN dv; ð5Þ

where ke and me are the elemental stiffness and mass matrices and B is the strain matrix
and N is the matrix of shape functions. Numerical integration using Gauss quadrature
scheme is carried out for equation (5). If the same material is used for all the three layers,
the above formulation will reduce to first order shear deformation theory and if curvature
is in only one direction, this will become a cylinder.
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2.2. FINITE ELEMENT FORMULATION OF THE FLUID DOMAIN (COMPRESSIBLE)

A semi-analytical, eight-noded, annular, isoparametric element is used for modelling the
fluid domain. This is shown in Figure 2. The governing differential equation for the fluid
region is popularly called the wave equation. It denotes the phenomenon in which the
energy is propagated by waves and is applied to problems of sound propagation, sloshing
of liquid and fluid–structure interaction. Its finite element expression has velocity potential
as nodal degrees of freedom. The pressure in excess of hydrostatic pressure, p; is associated
with the motion of the fluid. This pressure p is given by Bernoulli’s equation.

The assumptions made are (1) the fluid flow is potential, (2) small deformations for the
structure, i.e., linear, (3) flow is inviscid, irrotational and isentropic and fluid pressure is
normal to the shell wall, (4) fluid is compressible and (5) there is no flow separation or
cavitation.

The velocity potential should satisfy the wave equation and the associated boundary
conditions shown below:
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In cylindrical co-ordinates, the wave equation is
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where f is the velocity potential, c is the velocity of sound, Ux is the mean axial flow
velocity of fluid and M ¼ Ux=c (Mach number). Therefore, we have
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The radial velocity of the fluid must be equal to the instantaneous velocity of the shell.
This will satisfy the impermeability or dynamic boundary conditions, which ensures
contact between the shell and the fluid. That is,
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The pressure acting on the shell surface is given by Bernoulli’s equation for unsteady flow
(Figure 3):
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where V 2 ¼ V 2
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r and Ps is the stagnation pressure. Now P can be written as the

sum of a mean pressure %PP and the perturbation pressure p:

P ¼ %PP þ p: ð11Þ
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Figure 2. Cross-section of the annular fluid element.



Figure 3. Discretization of the structure (3-noded line) and fluid (8-noded rectangle).
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The non-linear terms in V2 are neglected for small deformations, we get V2 ffi
U2

x þ 2Ux@f=@x;
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� �
: ð12Þ

A Galerkin weighted residual approach is used to formulate the finite element form
of the governing wave equation in cylindrical co-ordinates. The result of the
manipulations is: Z
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where Nf is the fluid shape functions given in reference [13]. The y direction variation of f
is expressed in the form of a Fourier series. The first term of equation (14) is rewritten
using the fluid–shell interface boundary condition of equation (9) asZ
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where %NNs is the w component of the shell shape function.
Similarly from equation (12), the pressure acting on the fluid–structure interface can be

converted to the finite element equations,Z
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Now the complete fluid-structure finite element equation is
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Rewriting the above equation in state-space form by letting fdg ¼ fu f ’uu ’ffgT:
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The shell and fluid motion are coupled by the off diagonal terms of the damping and
stiffness matrices. For stationary fluids, the coupling in stiffness vanishes. The equation is
converted into state-space form equation (18) and the resulting eigenvalues are then
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determined using LAPACK routine, DGEGV [14]. A sample finite element discretisation
is shown in Figure 3.

2.3. FINITE ELEMENT FORMULATION OF THE FLUID DOMAIN (INCOMPRESSIBLE)

In this case, the fluid is assumed as incompressible, all other assumptions hold well as in
the previous case. Here, the velocity potential should satisfy the Laplace equation and the
boundary conditions:

r2f ¼ 0: ð19Þ

In cylindrical co-ordinates, the Laplace equation is
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where f is the velocity potential. As above, a similar Galerkin weighted residual approach
is used to formulate the finite element form of the governing Laplace equation in
cylindrical co-ordinates. The matrix equation is shown below:
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Now we can condense the fluid equation as below:
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f ¼ Hff�1Cfu ’uu þ UxH
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Substituting f and ’ff into the structural equation, we get
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This can be written in the state-space form by letting fdg ¼ f u ’uu gT:
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where MM ¼ ½Muu þ CufHff�1Cfu	; CC ¼ Ux½CufHff�1Kfu þ KufHff�1Cfu	; and KK ¼
½Kuu þ U2

xK
ufHff�1Kfu	:

In this case, an added mass term, an added damping term (similar to coriolis effect) due
to potential formulation and an added stiffness term (similar to centrifugal effect) due to
stiffening by the pressure acting on the walls are present.

3. RESULTS AND DISCUSSION

A semi-analytical finite element formulation for compressible and incompressible flow
through composite shells is formulated. Using the state-space approach, the combined
equation for the structure and the fluid is solved for the compressible flow model
(equations (17) and (18)). For incompressible flow model, equation (25) is written in the
state-space form, i.e., equation (26) and solved. An eigenvalue analysis of composite shells
conveying fluids at different flow velocities is carried out. For each circumferential mode
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(denoted by n), the associated axial modes (denoted by m) are computed. The results
obtained from the present formulation are validated with results quoted in the literature.
In addition, the results are obtained using both compressible and incompressible flow
models for different boundary conditions. These are compared for an l=a ratio of 1 and an
a=h ratio of 100. Subsequently, using the incompressible flow model, a detailed parametric
study is attempted for different boundary conditions, l=a ratios, a=h ratios and different
layer angles. To find out the effect of element size on the eigenvalues, the results of two,
four and eight elements in the radial direction and eight, 16 and 20 elements along the
length and its combinations are compared. It is found out that for the present formulation,
two elements in the radial direction and eight elements in the longitudinal direction will
give accurate results.

3.1. VALIDATION

Pa.ııdoussis [15] has studied the static and dynamic instabilities of pipes conveying fluids.
He derived the governing differential equation for the coupled fluid structure system
considering the pipe as a beam. In order to validate the present formulation, the results for
circumferential mode n ¼ 1; which corresponds to the beam mode and for material
properties of mild steel are used. For the non-dimensional parameter b ¼ 0�8; which
represents the ratio of the fluid mass to the sum of structural and the fluid masses, the
comparison is shown in Figure 4. The graph shows the dimensionless flow velocity u versus
the dimensionless frequency o=o0; where o is the frequency of the structure in rad/s, o0 isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðEI=ðm þ MÞL4Þ
p

and u is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEI=ML2Þ

p
Ux where Ux is the flow velocity in m/s, m is the

mass per unit length of pipe (kg/m), M is the mass per unit length of fluid (kg/m) and L is
the length of pipe in m.

Figure 4 shows excellent agreement for the results of present formulation with that of
Pa.ııdoussis [15] (Figure 4). For composite shells the results of Chang and Chiou [6] is
compared. Chang and Chiou [6] have studied the natural frequencies and critical velocities
of laminated circular cylindrical shells with fixed–fixed ends conveying fluids. They used
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Table 1

Comparison of present formulation with Chang and Chiou [6]

l=a ¼ 25; h=a ¼ 0�05; a ¼ 0; CC, rf ¼ 10�67808

Circumferential mode Axial mode Chang and Chiou
critical velocity

Present critical velocity

1 1 3�55 4�05
1 2 4�35 4�39
2 1 2�75 3�02
2 2 2�85 3�04 (coupled mode flutter)
3 1 3�43 3�31
3 2 3�47 3�41
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Mindlin-type first order transverse shear deformation cylindrical shell theory for the
analysis. Equations of motion are derived by Hamilton’s principle. Fluid pressure acting
on the wall is obtained through the continuity condition and the assumption of the ideal
flow. Hence, the finite element code developed for incompressible flow is validated with the
results from Chang and Chiou [6] as shown in Figure 5. The results are obtained for a
cylindrical pipe with l=a ¼ 25; h=a ¼ 0�05 and a (angle of ply)=0. Critical velocities for
circumferential modes 1–3 are compared in Table 1. The values in the table indicate good
agreement, but the present method generally predicts the values on the higher side. It is to
be noted that the non-dimensional frequencies for the zero flow case reported by Chang
and Chiou [6] do not exactly agree with results published in the literature [15]. The
deviations are probably due to their numerical implementation using the Bessel function.
The typical dimensionless material constants used by Chang and Chiou [6] for a single
layer, in its material principal axes are as follows: dimensionless velocity is Ux=U0 where
U0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
E0=rs

p
; dimensionless frequency O ¼ o=o0 � 100 where o0 ¼ U0=a; o is the real

natural frequency, a is the radius of the shell, rs is the density of the shell material and
E1=E0 ¼ 21; E2=E0 ¼ E3=E0 ¼ 1�7; G12=E0 ¼ G13=E0 ¼ 0�65; G23=E0 ¼ 0�639; where E1;
E2; E3 are Young’s moduli and (G12; G13; G23) is the vector of shear moduli for the
composite shell. In the present study, the non-dimensional velocity is taken as U0 ¼ E1=r
(Figure 5).

3.2. COMPARISON OF COMPRESSIBLE AND INCOMPRESSIBLE FLOW MODELS

First, a comparison between the compressible and the incompressible flow models is
carried out to study the effect of compressibility in the dynamic characteristics of the
composite shell conveying fluids. It is to be mentioned here that in order to use the
potential formulation for compressible flow, small density changes are assumed. A
composite shell of radius 10 cm, length 10 cm and thickness 1mm with clamped–clamped
boundary condition is modelled and analyzed. Figure 6 shows the comparison of
compressible and incompressible flow models for composites graphite/epoxy and kevlar/
epoxy for circumferential modes corresponding to their respective minimum critical
velocities. As expected, the real eigenvalues decrease as the flow velocity increases and at a
particular point the real eigenvalue vanishes at point A. This velocity is called the critical
velocity. If the flow velocity is increased further, the real eigenvalue reappears (B) and it
coalesces with the next higher axial mode real eigenvalue (C) and moves together to the
next higher mode (C–D). The first mode eigenvalue separates after some time, decreases



0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
Validation

D
im

en
si

on
le

ss
 fr

eq
ue

nc
y

Dimensionless velocity

Chang & Chio [6]
 n=1, m=1
 n=1, m=2
 n=2, m=1

present
 n=1, m=1
 n=1, m=2
 n=2, m=1

1 2 3 4 5 6

Figure 5. Validation of the present study with that of Chang and Chiou [6].

0.00 0.01 0.02 0.03 0.04
0

5

10

15

Coupled mode
flutter

RestabilisationDivergence

DC

BA

Graphite/Epoxy, l/a=1, a/h=50, alpha=0, CC

D
im

en
si

on
le

ss
 fr

eq
ue

nc
y 

Ω

D
im

en
si

on
le

ss
 fr

eq
ue

nc
y 

Ω

0

5

10

15

Dimensionless velocity Ux/U0

0.00 0.01 0.02 0.03 0.04

Dimensionless velocity Ux/U0

incompressible
 n=2, m=1
 n=2, m=2

compressible
 n=2, m=1
 n=2, m=2

Kewlar/Epoxy, l/a=1, a/h=50, alpha=0, CC

incompressible
 n=4, m=1
 n=4, m=2

compressible
 n=4, m=1
 n=4, m=2

Figure 6. Comparison between compressible and incompressible flow models for circumferential modes
corresponding to lowest critical velocity.

J. KOCHUPILLAI ET AL.296
and then vanishes. In the region where both the real eigenvalues of axial modes 1 and 2 are
the same (C–D), coupled mode flutter-type instability occurs. It is observed that for the
compressible flow model, buckling velocity or the critical velocity is lower than that of the
incompressible flow model. It is also found that for the circumferential mode at which
buckling occurs earlier, the effect of compressibility is minimal. That is the effect of
compressibility decreases as the circumferential mode number increases and has least
difference near about the circumferential mode at which the lowest critical velocity is
predicted. Again for higher axial modes, there is considerable difference in the two models.
This study is repeated for other boundary conditions such as clamped–free (CF) and
simply supported (SS). Results obtained for different boundary conditions show similar
trends. To find out the effect of compressibility with respect to the circumferential modes,
a study is carried out for the first 10 circumferential modes. Figure 6 shows the result of
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this study. Figure 7 gives the critical velocity and coupled mode flutter obtained by the
compressible flow model and by the incompressible flow model versus the circumferential
mode numbers. It is seen from Figure 7 that the critical velocity differs with respect to the
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circumferential mode and it is found that the lowest critical velocity corresponds to the
circumferential mode number 4 for l=a ¼ 1; a=h ¼ 50 and a ¼ 0 for both compressible and
incompressible flow models. For this particular l=a ratio, the critical circumferential mode
number is 4 for graphite/epoxy, kevlar/epoxy and boron epoxy.

3.3. BUCKLING STUDIES ON CLAMPED–CLAMPED SHELL

Characterizing the influence of the aspect ratio (l=a) and slenderness ratio (a=h) on the
critical velocity is the main aim of the present study. In addition, another major aim of the
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Figure 11. Dimensionless frequency versus dimensionless velocity for composites, glass/epoxy, boron/epoxy,
kewlar/epoxy, and graphite/epoxy for clamped–clamped boundary condition for different l=a and h=a ratios.
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present study is to correlate the critical velocity and the natural frequency characteristics
of the composite shell. This is done with a view to develop design guidelines. To start with,
a composite (graphite/epoxy) shell of radius 10 cm, length 10 cm and thickness 1mm with
clamped–clamped boundary condition is studied. The non-dimensional velocity versus
non-dimensional frequency is shown in Figure 8. Ten circumferential modes (n ¼ 1210)
and the corresponding two axial modes (m ¼ 1; 2) are computed using the incompressible
flow model from which the one corresponding to the lowest critical velocity and two
adjacent to that mode are shown in Figure 8. Here also the real eigenvalues decrease as the
flow velocity increases. The real eigenvalue vanishes at critical velocities (divergence-type
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buckling) and reappears as the flow is further increased. The coupled mode flutter-type
instability occurs from the point where the first and the second axial mode eigenvalues
coalesce. The imaginary part also gives an indication of the type of buckling mode, i.e.,
either divergence or coupled mode flutter. Until the critical flow velocity is reached, the
imaginary eigenvalues are either zero or very near zero and for velocities above the critical
velocity, the imaginary eigenvalues becomes larger. This is shown in Figure 9. This means
that the system is not stable. From Figure 8, it is observed that the buckling occurs first for
the circumferential mode 5 and this corresponds to the lowest natural frequency of the
fluid-filled shell as shown in Figure 10.
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Even though the main aim of the present study is to understand the divergence type of
buckling behaviour of composite shells, which usually occurs before coupled mode flutter,
an attempt is made to link the circumferential mode corresponding to the lowest critical
velocity to that of the circumferential mode having the lowest natural frequency of the
fluid-filled shell. Subsequent to the above study, a typical detailed study has been made on
a shell with clamped–clamped boundary condition, aspect ratios (1, 4, 25) and layer angles
(0, 45, 90). In present study, the influence of flow velocities on the natural frequency
characteristics of composite clamped–clamped shells of length-to-radius ratios 1, 4, 25 has
been carried out for typical radius-to-thickness ratios (20, 50, 100, 200). The variation of
dimensionless flow velocities with dimensionless frequency has been shown in Figure 11. It
is found from the graph that for large aspect ratios (l=a ¼ 25) buckling, in general, occurs
near the first circumferential mode (n ¼ 1). This agrees with the buckling of pipelines in
bending mode. In general, the buckling of composite shells is a complicated phenomenon
and depending upon the type of loading, boundary condition and parameters of the shell,
it may occur at different circumferential modes. Divergence buckling may perhaps be
categorized as static buckling. Hence, an attempt is being made to explain the behaviour
from the natural frequencies of the shell. To this end, the frequency characteristics of
different shells were obtained (without flow consideration). The lowest frequencies of
different shells with different aspect ratios occur at different circumferential modes. In
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addition, a detailed study was made on the buckling behaviour of different shells for
all the circumferential modes. From this study, the circumferential mode pertaining
to the lowest critical velocity was identified and on comparing with Figure 12, it is
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kevlar/epoxy, and graphite/epoxy for clamped–free boundary condition for different l=a and h=a ratios and layer
angles.
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found that there is a clear correlation between the circumferential buckling modes of
composite shells conveying fluids and the circumferential mode at which the lowest natural
frequency occurs for the fluid-filled composite shell, especially for a ¼ 90 as shown in
Figure 12.
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Table 2

Comparison of circumferential mode having the lowest natural frequency for the fluid-filled

composite shell and that of circumferential modes at which buckling occurs first

Circumferential mode
at which the lowest
natural frequency

occurs

Circumferential mode
at which the buckling

occurs

Boundary
condition

Case a ¼ 0 a ¼ 90 a ¼ 0 a ¼ 90

CF Graphite/epoxy, l=a ¼ 1; a=h ¼ 20 1 3 1 3
Graphite/epoxy, l=a ¼ 1; a=h ¼ 50 1 4 1 4
Graphite/epoxy, l=a ¼ 1; a=h ¼ 100 1 5 5 5
Graphite/epoxy, l=a ¼ 1; a=h ¼ 200 8 6 6 6
Graphite/epoxy, l=a ¼ 4; a=h ¼ 20 8 6 3 2
Graphite/epoxy, l=a ¼ 4; a=h ¼ 50 4 2 4 3
Graphite/epoxy, l=a ¼ 4; a=h ¼ 100 5 3 6 4
Graphite/epoxy, l=a ¼ 4; a=h ¼ 200 8 4 7 5
Graphite/epoxy, l=a ¼ 25; a=h ¼ 20 2 1 2 1
Graphite/epoxy, l=a ¼ 25; a=h ¼ 50 2 1 2 1
Graphite/epoxy, l=a ¼ 25; a=h ¼ 100 2 1 3 2
Graphite/epoxy, l=a ¼ 25; a=h ¼ 200 3 2 4 2

SS Graphite/epoxy, l=a ¼ 1; a=h ¼ 20 1 3 3 3
Graphite/epoxy, l=a ¼ 1; a=h ¼ 50 1 4 4 4
Graphite/epoxy, l=a ¼ 1; a=h ¼ 100 1 5 6/7 4/5
Graphite/epoxy, l=a ¼ 1; a=h ¼ 200 9 6 5 6
Graphite/epoxy, l=a ¼ 4; a=h ¼ 20 3 2 3 2
Graphite/epoxy, l=a ¼ 4; a=h ¼ 50 4 3 4 2
Graphite/epoxy, l=a ¼ 4; a=h ¼ 100 5 3 5 3
Graphite/epoxy, l=a ¼ 4; a=h ¼ 200 6 3 6 3
Graphite/epoxy, l=a ¼ 25; a=h ¼ 20 2 2 2 2
Graphite/epoxy, l=a ¼ 25; a=h ¼ 50 2 2 2 2
Graphite/epoxy, l=a ¼ 25; a=h ¼ 100 2 2 2 1
Graphite/epoxy, l=a ¼ 25; a=h ¼ 200 2 1 3/4 1

CC Graphite/epoxy, l=a ¼ 1; a=h ¼ 20 3 2 3 2
Graphite/epoxy, l=a ¼ 1; a=h ¼ 50 4 3 3/4 3
Graphite/epoxy, l=a ¼ 1; a=h ¼ 100 6 4 5/6 4
Graphite/epoxy, l=a ¼ 1; a=h ¼ 200 7 4 7/8 4
Graphite/epoxy, l=a ¼ 4; a=h ¼ 20 3 1 3 2
Graphite/epoxy, l=a ¼ 4; a=h ¼ 50 3 2 4 2
Graphite/epoxy, l=a ¼ 4; a=h ¼ 200 4 2 5/6 2
Graphite/epoxy, l=a ¼ 25; a=h ¼ 20 1 2 4 2
Graphite/epoxy, l=a ¼ 25; a=h ¼ 50 1 1 2 2
Graphite/epoxy, l=a ¼ 25; a=h ¼ 100 2 1 2 2
Graphite/epoxy, l=a ¼ 25; a=h ¼ 200 2 1 2 1
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3.4. BUCKLING STUDIES ON SIMPLY SUPPORTED AND CLAMPED–FREE COMPOSITE SHELL

A detailed study has been carried out on composite shells with simply supported
boundary condition and aspect ratios (1, 4, and 25). The present study examines the
influence of flow velocities on the natural frequency characteristics of composite
simply supported shells of length-to-radius ratios 1, 4 and 25 with typical radius-to-
thickness ratios (20,50,100 and 200). To start with the frequency characteristics of
different shells were obtained (with out flow consideration). Variation of dimensionless
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flow velocities with dimensionless frequency has been shown in Figure 13. Here also,
it is seen that there is a good correlation between the circumferential mode at which
the lowest critical velocity occurs and the circumferential mode at which the shell
has got the lowest frequency. A similar study is carried out for clamped–free boundary
condition to study the correlation between the circumferential mode at which
lowest critical velocity of the composite shell occurs and the circumferential mode
corresponding to the lowest frequency of the system (Figure 14). It is found that the above
correlation is applicable to all boundary conditions in general. This may be due to the fact
that the stiffness of the shell for that particular circumferential mode which buckles earlier
is the least. Table 2 summarizes the fact that the circumferential mode at which lowest
critical velocity occurs and the circumferential mode corresponding to the lowest
frequency of the system show good correlation for all the boundary conditions
investigated.

4. CONCLUSIONS

A semi-analytical coupled finite element formulation is developed for general shells
conveying fluids. More complicated geometry can be easily modelled using the present
formulation. A comparison between compressible and incompressible flow models
indicates that compressibility has little effect on circumferential modes close to those
buckling modes corresponding to the lowest critical velocity. The finite element
formulation works well for the classical boundary conditions, i.e., clamped–clamped,
clamped–free and simply supported. For very short shells, the buckling mode is the
bending mode and as the length of the shell increases, the buckling mode shifts to higher
circumferential modes and eventually returns to the bending mode. In general, the
circumferential mode at which the lowest critical velocity occurs corresponds to the
circumferential mode at which the lowest frequency of the system occurs. This is true for
all aspect ratios and boundary conditions studied. Hence, the frequency characteristics can
be used, to identify the circumferential mode at which the lowest critical velocity will
occur, for design purposes. In the case of clamped–free boundary condition, the system
stabilizes after divergence and then goes to couple mode flutter type of instability. This is
shown in Figure 14. In certain cases, different axial modes come within the same frequency
range thus showing a high degree of coupling. This could also lead to coupled mode flutter
type of instability and will be investigated in future. More complex piping geometry will
also be investigated shortly.
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